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Abstract

Hebbian models of development and learning require both activity-dependent synaptic

plasticity and a mechanism that induces competition between different synapses. Recent

experiments have characterized a form of long-term synaptic plasticity that depends on

the relative timing of pre- and postsynaptic action potentials, which we call spike-timing-

dependent plasticity (STDP). We show, in modeling studies, that this form of synaptic

modification can automatically adjust synaptic strengths so that the postsynaptic neuron

becomes more sensitive to presynaptic spike timing and operates in a balanced or irregular-

firing regime. It has been argued that neurons in vivo operate in such a regime, and STDP

may thus explain how the required level of excitation arises and is maintained. Despite

being synapse specific, STDP generates competition between different synapses because

they compete for control of the timing of postsynaptic action potentials. By combining

synaptic modification and competition, STPD can serve as a mechanism for competitive

Hebbian learning that does not require further assumptions or constraints on synaptic effi-

cacies. This learning mechanism is not sensitive to overall input firing rates or variabilities,

but selectively strengthens groups of synapses whose activities are correlated over short

time periods.
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Introduction

Hebbian learning, the development of neural circuits on the basis of correlated activity,

relies on two critical mechanisms. The best known of these is activity-dependent synap-

tic modification along the lines proposed by Hebb1. Equally important is a mechanism

that forces different synapses to compete with one another, so that when some synapses

to a given postsynaptic neuron are strengthened, others are weakened2,3. For example,

correlation-based rules of synaptic modification can provide a reasonable account of many

aspects of development in visual cortex, but only when they are combined with constraints

introduced to ensure competition4. While Hebbian synaptic modification has received sup-

port from experiments on long-term potentiation and depression5−8, much less is known

about the mechanisms that generate competition between synapses.

At first, it might appear that any mechanism that imposes competition among synapses

must involve a global intracellular signal that reflects the state of many synapses. The

constraints used in many models of Hebbian learning9, while not biophysically realistic,

are based on this idea. Typically these constraints limit the sum of synaptic strengths re-

ceived by a cell, or the mean activity of the cell. Experimental evidence concerning such

global synaptic scaling is only now beginning to appear10−12. Competition can also arise

locally due to synaptic modification mechanisms that equilibrate at a pre-set level of to-

tal synaptic innervation or activity9. These can be static mechanisms, such as thresholds or

negative input correlations9,13, or dynamics mechanisms involving additional non-Hebbian

synaptic growth or decay terms9 or shifts in the synaptic modification rule itself, as in
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the sliding threshold of the BCM model14. Here we explore an entirely different local

mechanism suggested by recent results on the effect of spike timing on long-term synaptic

modification15−20 in which different synapses compete for control of the timing of postsy-

naptic action potentials. We show that the dependence of synaptic modification on spike

timing provides a mechanism that can lead to competitive Hebbian learning without requir-

ing global intracellular signaling or pre-set activity or synaptic efficacy levels.

Experimental evidence from a number of different preparations15−20 suggests that both

the sign and degree of synaptic modification arising from repeated pairing of pre- and

postsynaptic action potentials depend on their relative timing. In experiments on neo-

cortical slices15,20, hippocampal slice17 and cell18 culture, and in vivo studies of tadpole

tectum19, long-term strengthening of synapses occurred if presynaptic action potentials

preceded postsynaptic firing by no more than about 50 ms. Presynaptic action potentials

that followed postsynaptic spikes produced long-term weakening of synapses. The largest

changes in synaptic efficacy occurred when the time difference between pre- and postsy-

naptic action potentials was small, and there was a sharp transition from strengthening

to weakening as this time difference passed through zero. We call this form of synaptic

plasticity spike-timing-dependent plasticity (STDP).

Synaptic modification by STDP-like rules has been studied previously in models of

temporal pattern recognition21,22, temporal sequence learning23−25, coincidence detection26,27,

navigation28−30, and direction selectivity31−33. Most of this work is based on earlier data

regarding the spike-timing dependence of synaptic modification35−37 and, being less con-
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strained, involved a range of different time scales for synaptic modification. These exam-

ples studied the utility of an STDP-like synaptic modification rule in solving a number of

computational tasks. Here we focus instead on the competitive and stabilizing properties

of STDP, in a model based on recent experimental data15−20. The competitive nature of

STDP has been noted26,19, but not studied in detail previously. Stability of an STDP-like

rule in combination with non-Hebbian plasticity has been studied in a linear firing-rate

model34, but we find qualitatively new behavior when the timing of individual action po-

tentials and not merely firing-rates is taken into account. In this case, STDP modification

alone can lead to stable configurations of synaptic conductances, subject only to a limit on

the strengths of individual synapses. Furthermore, the competition and stability that arise

in STDP-based synaptic modification yield a close link to ideas concerning the balance of

excitation and inhibition and its effect on response variability38−50. STDP automatically

forces the postsynaptic neuron into a balanced regime in which it is sensitive to the tim-

ing of the presynaptic action potentials it receives. Such sensitivity provides the basis of

the competition for the control of spike timing that stabilizes synaptic modification under

STDP.

Spike-Timing-Dependent Synaptic Plasticity

The modeling studies we present are based on the spike-time-dependent synaptic mod-

ification rule illustrated in Figure 1. The curve drawn in Figure 1 determines the amount

of synaptic modification arising from a single pre- and postsynaptic spike pair separated by
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Figure 1: The STDP modification function. The change of the peak conductance at a synapse due
to a single pre- and postsynaptic action potential pair is F(�t) times the maximum value gmax. �t
is the time of the presynaptic spike minus the time of the postsynaptic spike. In this figure, F is
expressed as a percentage.

a time �t . It is of the form

F(�t) =




A+ exp(�t/τ+) if �t < 0

−A− exp(−�t/τ−) if �t > 0 ,

(1)

where τ+ and τ− determine the ranges of pre- to postsynaptic interspike intervals over

which synaptic strengthening and weakening occur. A+ and A− determine the maximum

amounts of synaptic modification, which occur when �t is close to zero.

The function F(�t) of equation 1 provides a reasonable approximation of the de-

pendence of synaptic modification on spike timing seen in the experimental data. The

experimental results suggest a value for τ+ in the range of tens of milliseconds and, in

the examples we present, we use τ+ = 20 ms. Data from some preparations indicate

that the temporal window for synaptic weakening is roughly the same as that for synaptic

strenghtening15,18,19, while other results reveal a larger window for synaptic weakening17,20.
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We have run simulations under both conditions. For the results we report here, we do not

see a significant difference between the two cases, and we use τ− = τ+ = 20 ms through-

out.

The amplitude of synaptic modification, which is controlled by the parameters A+ and

A−, has been adjusted to reflect the modification due to a single pair of pre- and postsy-

naptic spikes by dividing the total modification measured experimentally for multiple spike

pairs by the number of pairs. This assumes that the effects of individual spike pairs sum

linearly. At least one contradictory effect has been reported, a dependence of synaptic

strengthening on pairing frequency, including a threshold effect and frequency-dependent

saturation15. Our model does not incorporate this finding, but we maintain presynaptic rates

above the reported threshold frequency for synaptic strengthening15. In the simulations we

show, we use A+ = 0.005 (the value of A− is discussed below), except in Figure 2F where

we use A+ = 0.02.

In our model, we make the important assumption that synaptic weakening through

STDP is, overall, a slightly larger effect than synaptic strengthening27. Specifically, sta-

ble competitive synaptic modification requires the integral of the function F to be negative,

which assures that uncorrelated pre- and postsynaptic spikes produce an overall weaken-

ing of synaptic strength. A negative integral of F requires A−τ− > A+τ+. The data

are mixed on this issue. The results that report roughly equal time scales for synaptic

strengthening and weakening15,18,19 indicate rough equality between the two effects and,

in some cases, even suggest a slight dominance of strengthening over weakening. The data
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showing a longer temporal window for synaptic weakening17,20 more clearly support the

dominance of synaptic weakening over strengthening by STDP. In our simulations we use

A−/A+ = 1.05, except for Figure 2D where A−/A+ varies.

In the model we study, ga denotes the peak synaptic conductance (the synaptic conduc-

tance immediately after an isolated presynaptic spike) at an excitatory synapse labeled by

the integer a (with a = 1, 2, . . . , N ). This conductance must always be positive, and is not

allowed to exceed a maximum value gmax. A pre- and postsynaptic spike pair separated by

a time interval �t modifies the peak synaptic conductance by an amount F(�t)gmax. The

value A+ = 0.005 thus corresponds to a change of 0.5% of the maximum synaptic strength

per spike pair. If this modification rule would push the peak synaptic conductance beyond

the allowed range 0 ≤ ga ≤ gmax, ga is set to the appropriate limiting value. A scheme for

implementing this modification rule is presented in the Methods section.

In our modeling studies, we examine how STDP acts on the excitatory synapses driving

an integrate-and-fire model neuron with N = 1000 excitatory and 200 inhibitory synapses

(see Methods). The excitatory synapses are activated by various types of spike trains: un-

correlated spike trains generated by independent Poisson processes at various rates, bursts

of action potentials with different latencies, and partially correlated spike trains. The model

neuron also receives inhibitory input consisting of Poisson spike trains at a fixed rate of 10

Hz. In the simulations, excitatory synapses are modified on the basis of their pre- and

postsynaptic spike timing, while inhibitory synapses are held fixed.
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Balanced Excitation

To function properly, a neuron must establish and maintain an appropriate level of exci-

tation so that it can respond to its inputs by firing action potentials at reasonable rates.

The firing statistics of cortical neurons suggest that this is achieved through a balance

of the currents arising from excitatory and inhibitory synapses and intrinisic membrane

conductances38−48. As we will see, STDP provides a mechanism by which this balance

can be established and maintained. This results in a state in which presynaptic action po-

tentials can control the timing of postsynaptic spikes, so that competition between synapses

can be realized.

To address this issue, we initially set the peak conductances of all the excitatory synapses

of the model neuron to gmax, which produces a high firing rate. All the excitatory synapses

to the model neuron received independent Poisson spike trains with the same average rate.

After a period of adjustment, a steady-state condition was achieved in which the firing rate

of the postsynaptic neuron and the distribution of peak synaptic conductances remained

constant. Figures 2A and 2B show histograms of the resulting distributions of peak synaptic

conductances for input firing rates of 10 and 40 Hz. Although all the synaptic conductances

started with the same value, there is no stable equilibrium state with a uniform distribution

of their values. Instead, most of the peak synaptic conductances have been pushed toward

the limiting values of zero or gmax. For low input rates, more synapses approach the upper

limit (Figure 2A), and for high input rates more are pushed toward zero (Figure 2B). This

has the effect of keeping the total synaptic input to the neuron roughly constant, indepen-
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dent of the presynaptic firing rates. The split between strong and weak synapses is also

affected by the values of gmax (fewer strong synapses develop for larger gmax) and A−/A+.

The initial distribution of synaptic strengths has little effect on the final steady-state distri-

bution as long as the postsynaptic neuron is initially firing action potentials.

Figure 2C shows the firing rate and coefficient of variation (CV) of the interspike inter-

vals for the postsynaptic neuron once the synapses have reached their steady-state distri-

bution. The CV is the standard deviation of the interspike intervals divided by their mean.

STDP has a strong regulatory effect on the steady-state firing rate of the postsynaptic neu-

ron, which increases by only about 1 Hz for each 5 Hz increase in the input firing rate.

In contrast, if the peak synaptic conductances are held fixed in this model, the firing rate

increase is over 100 Hz for a 5 Hz increase in the firing rate of the inputs. Of course, the

long-term synaptic changes due to STDP take time to develop, so STDP only regulates the

long-term average firing rate. The neuron thus remains highly sensitive to brief changes in

the input firing rates.

The coefficient of variation of the postsynaptic spike train is fairly large and remarkably

independent of the input firing rate (Figure 2C). This suggests that STDP regulates the

variability of the postsynaptic response. The high degree of firing variability is primarily

due to an overall balance between inhibitory and excitatory conductances in the model.

A reasonable measure of this balance is the ratio of total inhibitory to excitatory current

when the membrane potential is at the action-potential threshold. As shown in Figure 2D,

STDP adjusts this ratio to be slightly greater than one over the entire range of presynaptic
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Figure 2: Balanced excitation and irregular firing produced by STDP. A) Histogram of the fraction
of synapses taking different peak conductance values ranging from zero to gmax. For an input rate
of 10 Hz, the peak synaptic conductances tend to the limiting values, but more are near gmax than
near zero. B) Same as A, but for an input rate of 40 Hz. Now more peak conductances are near
zero than near gmax. C) The postsynaptic firing rate and CV of the postsynaptic interspike intervals
for different input firing rates. D) The ratio of inhibitory to excitatory currents at threshold and
the percentage of strong synapses (g ≥ 0.8gmax) for different presynaptic firing rate. The leakage
conductance is included as an inhibitory current in this ratio because it acts to hyperpolarize the
neuron. E) The postsynaptic firing rate and CV of the postsynaptic interspike intervals for input
firing rates of 10 Hz but different values of A−/A+, the ratio of the amplitudes of maximal synaptic
weakening and strengthening. F) Same as A, but with gmax 2.33 times larger and the synaptic
modification per spike pair four times larger (gmax = 0.035, A+ = 0.020, A=0.021). The larger
value of gmax forced more synapses to lower conductance values, while the higher modification rate
filled in the distribution.
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firing rates considered. This indicates a balanced condition in which, on average, inhibitory

effects are slightly dominant at threshold. An additional contribution to firing variability

comes from the reduction in the number of strong synapses for high input rates. Figure

2D also shows the number of strong synapses for different presynaptic firing rates, where

we define strong synapses as those with g ≥ 0.8gmax. For the value of gmax we used,

roughly half the synapses are strong for a 10 Hz presynaptic rate. The number of strong

synapses drops to 10% when the presynaptic rates are set to 40 Hz. In all cases, the balance

between inhibition and excitation is the dominant source of variability, but the reduction in

the number of strong inputs also contributes when the presynaptic firing rates are high.

Both the firing rate and the coefficient of variation of the postsynaptic neuron depend

on the ratio A−/A+, as seen in Figure 2E. If this ratio is slightly larger than one, the firing

rate of the postsynaptic neuron is maintained in a reasonable range, and the CV is close to

one, indicating an irregular postsynaptic spike train.

The histograms in Figures 2A and B indicate that synaptic conductances tend to be

pushed close to the upper and lower limits of their allowed range by the STDP modification

rule we are using. This results in a bimodal distribution. A more continuous distribution

arises if the degree of synaptic modification per spike pair is increased. For example,

Figure 2F shows an example where the equilibrium distribution of synaptic conductances

is roughly exponential, except for the a small excess near g = gmax. This more closely

matches data on distributions of synaptic strengths estimated from recorded spontaneous

synaptic (mini) potentials51.
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Softky and Koch38,39 first pointed out that it is difficult to obtain CV values as large

as those seen in vivo (CV ≈ 1) in an integrate-and-fire model receiving many independent

presynaptic inputs. Correlations of input spike timing, such as synchronization, could con-

tribute to increased CV’s40. However, a number of authors have noted that a high degree

of variability and CV’s near one will also arise if the excitatory inputs to a neuron are

balanced relative to the inhibitory synaptic and membrane currents41−48. The critical con-

dition is that the mean input to the neuron should only be sufficient to charge the membrane

up to a point below, or only slightly above, the threshold for action potential generation,

so that spike times are determined primarily by positive fluctuations in input rather than by

the mean input. This condition may also play a critical role in explaining a number of fun-

damental visual cortical response properties49. STDP automatically achieves this balanced

state for a wide range of input firing rates.

The reason that STDP achieves a balanced state can be understood from basic response

characteristics of a neuron integrating many inputs. Such a neuron can operate in two dif-

ferent modes with distinct spike-train statistics and input-output correlations44,46. When

excitation is strong, as at the beginning of our simulations, the mean input to the neuron

would bring it well above threshold if action potentials were blocked, so the neuron oper-

ates in an input-averaging or regular-firing mode. The action potential sequences produced

in this mode are significantly more regular than the presynaptic spike trains. The interspike

intervals of the postsynaptic responses depend on the total synaptic input, but the absolute

timing of individual action potentials is fairly independent of fluctuations in this input. As
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a result, there are roughly equal numbers of presynaptic action potentials before and after

each postsynaptic spike46,50. This is seen in Figure 3A, which shows the relative frequency

of pre- and postsynaptic spike pairs separated by different intervals of time for conditions

at the beginning of our simulations. This figure shows only a small excess of presynaptic

spikes occurring just before a postsynaptic action potential. The STDP curve from Figure 1

has been overlayed onto Figures 3A and 3B. As we have noted, the area under the synaptic

weakening portion of this curve is greater than the area under the strengthening part. Ini-

tially in our simulations, there is an overall weakening of the excitatory synapses because

the small excess of presynaptic spikes occurring prior to postsynaptic action potentials is

not large enough to overcome the excess of synaptic weakening imposed by the STDP rule

(Figure 3A).
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Figure 3: Correlation between pre- and postsynaptic action potentials before and after STDP. The
solid curves indicate the relative probability of a presynaptic spike occurring at time tpre when a
postsynaptic spike occurs at time tpost. A correlation of one is the value due solely to chance occur-
rences of such pairs. The dashed curves show the STDP modification function from Figure 1. The
time-integral of the product of the synaptic modification curve and the correlation function deter-
mines whether, on average, the synapses will be strengthened or weakened. A) At the beginning of
our simulations, when all peak synaptic conductances are set to their maximal value, there is only
a small excess of presynaptic spikes prior to a postsynaptic action potential. B) At the end of the
simulations, when STDP has established a steady-state distribution of conductances, there is a larger
excess of presynaptic spikes prior to a postsynaptic action potential. In the steady-state, this excess
compensates for the asymmetry in the STDP modification curve, i.e., for the fact that A−/A+ > 1.
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As the excitatory synapses get weaker, the postsynaptic neuron enters a balanced mode

of operation in which it generates a much more irregular sequence of action potentials. Be-

cause the total synaptic input is, on average, near or sub-threshold in the balanced mode,

the postsynaptic neuron fires primarily in response to statistical fluctuations in the total in-

put. Such fluctuations occur irregularly, so the postsynaptic firing pattern is highly variable.

The absolute timing of action potentials in the irregular firing mode is related to temporal

features of the synaptic inputs, namely the fluctuations, and therefore there tend to be more

excitatory presynaptic action potentials before than after a postsynaptic response45,46,50,52.

As a result, there is a higher degree of correlation between pre- and postsynaptic action

potentials in this irregular-firing mode than in the regular-firing mode. Figure 3B shows a

larger excess of presynaptic spikes before a postsynaptic action potential than Figure 3A,

because it was constructed after STDP had modified the excitatory synapses. The STDP

rule achieves a steady-state distribution of peak synaptic conductances when the excess

of presynaptic action potentials prior to postsynaptic firing compensates for the asymme-

try in areas under the positive and negative portions of the STDP modification curve50.

STDP thus forces a cell into a stable equilibrium in which it is both reasonably active and

reasonably sensitive to input fluctuations.

Latency Reduction

For uncorrelated stochastic presynaptic spike trains, chance determines whether a given

synapse will ultimately become weak or strong through STDP. When the presynaptic in-

puts are correlated in various ways, the fate of individual synapses is controlled in a more
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systematic manner. The STPD rule strengthens synapses that fire prior to a postsynaptic

spike and weakens those that fire later. If, for example, the postsynaptic neuron receives a

barrage of excitatory synaptic input, STDP will strengthen short-latency excitatory inputs

while weakening those with long latencies. The ultimate effect of this synaptic modifica-

tion is to make the postsynaptic neuron respond more quickly.
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Figure 4: Reduction of latency by STDP. A) The initial peak synaptic conductances plotted as a
function of the relative latency of their synaptic inputs. B) The initial postsynaptic response to a
barrage of excitatory input with burst onset for each synapse occurring at the time of its relative
latency. C) The steady-state peak synaptic conductances plotted as a function of the relative latency
of the synaptic input. Short-latency synapses have been strengthened and long-latency synapses
have been weakened. D) The response of the postsynaptic neuron to the same input barrage as in B,
but after STDP has modified the peak synaptic conductances as in C.

In Figure 4, the inputs to the model neuron were silent except for isolated events rep-

resented by bursts of spikes with a Poisson distribution at 100 Hz for 20 ms. Different

synapses were not activated precisely synchronously during these events. Instead, each

synapse was assigned a relative latency chosen randomly from a Gaussian distribution with
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a mean of zero and a standard deviation of 15 ms. The burst of action potentials at a given

synapse occurred at a time given by the sum of its relative latency and the mean time of the

event.

Initially, all the synapses were set to the same strength of 0.2gmax (Figure 4A). This

produced a response in the postsynaptic cell that began shortly after the time marked zero,

which indicates the mean event time, and lasted for about 25 ms (Figure 4B). The input

events were then repeated periodically until the STDP rule had established a fixed distribu-

tion of peak synaptic conductances. In Figure 4C, the resulting steady-state conductances

are plotted as a function of the relative latency of the synapses. Short-latency inputs have

been strengthened to the maximum allowed level, gmax, while synapses with longer laten-

cies have been weakened to zero. This produces a quicker response in the postsynaptic

neuron, which now fires almost 20 ms earlier than it did originally (Figure 4D).

Correlation-Based Hebbian Modification

Factors that enhances the ability of a given synapse to rapidly evoke a postsynaptic

response will lead to its strengthening through STDP. Correlating different synaptic inputs

so that they are more likely to arrive together in a cluster is an effective way of increasing

their ability to evoke postsynaptic action potentials. By cooperatively generating action

potentials, such a cluster of synapses can grow stronger, while weakening other synapses

that are not part of the cluster. To study this effect, we generated input spike trains at rates

that were correlated across synapses (see Methods), and examined how they were affected

by STDP.
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Figure 5: Effects of correlation, firing rate, and variability on peak synaptic conductances. The
histograms show the average peak synaptic conductances within 20 bins. These values are the
results of averaging bimodal distributions of synaptic strengths within each bin. Different statistical
parameters describing the synaptic inputs are binned and displayed on the horizontal axes. A)
The synaptic inputs have correlation parameters ranging from zero to 0.2 and have been binned on
this basis. The degree correlation between any two inputs is determined by the product of their
correlation parameters. The correlation time constant is 20 ms, and the degree of correlation of a
synapse has a strong effect on its peak conductance. B) Same as A, but with a correlation time
constant of 200 ms. No effect of correlation on synaptic strength is observed. C) The synaptic
inputs have different firing rates ranging from 10 to 40 Hz, and this range has been binned. No
strong effect of rate on synaptic strength is observed. D) The synaptic inputs have distributions
of input firing rates with different standard deviations (labeled input variability) ranging from 0 to
0.5 in units of the mean rate. Binning is based on this input variability. No effect of variability on
synaptic strength is observed. In this example, τc = 20 ms as in A.

In Figure 5A and 5B, the presynaptic firing rates were generated to have a correlation

function that decayed exponentially with time and varied in amplitude across the popula-

tion of synapses. Specifically, the presynaptic firing rates ra for a = 1, 2, . . . , N had the

correlation function, 〈ra(t)rb(t ′)〉 = r2+r2(σ 2δab+(1−δab)cacb) exp(−|t −t ′|/τc), where

the angle brackets represent an average over the ensemble of rates, r = 10 Hz, σ = 0.5,
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and ca , which we call the correlation parameter, varied from zero to 0.2 uniformly across

the 1000 excitatory synapses (ca = 0.2(a − 1)/(N − 1)). The variation in ca values pro-

duces a gradation of correlation across the population of synapses. Pairs of synapses with

large c values are more highly correlated than synapses with smaller c values. In Figure

5A and 5B, the range of input correlation parameters is divided into 20 bins, and the av-

erage values of the steady-state peak synaptic conductances for synapses within these bins

are plotted in the form of a histogram. When the correlations decays rapidly, as in Fig-

ure 5A (τc = 20 ms), there is a marked tendency for more correlated synapses to become

stronger. This trend disappears for larger correlation times, as seen in Figure 5B (τc = 200

ms). A comparison of Figures 5A and B shows that synapses in Figure 5A have been both

strengthened by correlation and weakened by competition. To be strengthened, a group of

inputs must fire together long enough to generate a postsynaptic action potential, but must

then stop firing so that they are not subsequently weakened. As a result, correlations have a

large effect when the correlation time constant is approximately equal to the time constants

τ+ and τ− that govern the time scales for STDP34.

Although the degree of strengthening produced by STDP is sensitive to correlations,

it is not strongly affected by other properties of the presynaptic spike trains. For Figure

5C, the input firing rates were time-independent and uncorrelated, but they varied from

10 to 40 Hz uniformly across the population of synapses (ra = 10 + 30(a − 1)/(N − 1)

Hz). Figure 5C shows average steady-state peak synaptic conductances in bins that specify

different ranges of input firing rates. There is little tendency for synapses firing at either
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faster or slower rates to be preferentially strengthened or weakened by STDP. Higher firing

rates increase the speed at which synaptic modification occurs, but they do not otherwise

affect the final equilibrium distribution of maximal synaptic conductance values produced

by STDP.

Figure 5D shows that the steady-state peak synaptic conductances are also insensitive

to the degree of variability of the presynaptic input. The firing rates for this figure were

generated so that 〈ra(t)ra(t ′)〉 = r2 + r2σ 2
a exp(−|t − t ′|/τc), where r = 10 Hz and σa var-

ied from zero to 0.5 uniformly over the population of synapses (σa = 0.5(a − 1)/(N − 1)).

This means that the standard deviation of the input firing rates was different for different

synapses. Figure 5D shows the binned average peak synaptic conductances as a function of

the standard deviations of their inputs. There is no tendency for synapses with either more

or less variable firing rates to be preferentially strengthened or weakened by STDP.

The basic result of these studies is that STDP is insensitive to the average rate or degree

of variability of a given synaptic input. It is, however, strongly affected by correlations

between different synaptic inputs, provided that they decay rapidly enough as a function

of time. Synapses with strong, rapidly decaying temporal correlations will be strengthened

as a cluster and will suppress other synapses that are uncorrelated or have temporal corre-

lations that last over longer time periods. STDP thus shows the basic feature of Hebbian

learning, the strengthening of correlated groups of synapses, while displaying the desirable

features of firing-rate independence and stability, and a novel dependence on correlation

decay time.
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Discussion

Although Hebbian synaptic plasticity is a powerful concept, it suffers from a number

of problems. First, synapses are modified whenever correlated pre- and postsynaptic ac-

tivity occurs. Such correlated activity can occur purely by chance, rather than reflecting a

causal relationship that should be learned. To correct for this, neural network models of-

ten use a covariance rather than correlation-based synaptic modification rule53. However,

such a rule cannot, in general, achieve competition between synapses. This illustrates a

second problem of purely Hebbian modification; it is not competitive, so constraints must

be added to obtain interesting results. STDP appears to solve both of these problems. Ac-

cidental, non-causal coincidences weaken synapses if, as we have assumed, the integral of

the synaptic modification function is negative. Competition arises in a novel way, not due

to a global signaling or growth factor, or to an artificially imposed balance of nonspecific

synaptic decay and growth terms, but rather through a competition for control of the timing

of postsynaptic action potentials. Inputs that consistently predict a postsynaptic response

become the strongest inputs to the neuron. Causality is a key element of STDP. As Hebb

suggested1, synapses are only strengthened if their presynaptic action potentials precede,

and thus could have contributed to, the firing of the postsynaptic neuron.

STDP automatically leads to a balanced, irregular-firing state in which pre- and post-

synaptic spike times are causally correlated. This result depends crucially on considering

spike timing and not merely firing rates. In a linear, firing-rate model of STDP34, the cross-

correlation between pre- and postsynaptic firing does not change shape with changes in
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synaptic efficacy, as it does in Figure 3. This change in shape, in which causal correlations

grow stronger relative to acausal correlations as overall synaptic efficacy decreases, is the

key to the stabilizing and competitive effects of STDP we have presented.

STPD regulates both the rate and the coefficient of variation of postsynaptic firing

over a wide range of input rates. This represents a homeostatic regulatory function of

STDP, which is surprising given that, like the Hebb rule, it is destabilizing at individual

synapses. STDP also differentially strengthens the shortest-latency inputs evoked by a

stimulus. Within the STDP time window, synapses are strengthened in proportion to how

predictive they are of events that lead to postsynaptic spiking. There is some experimen-

tal evidence suggesting that the reduction of latency illustrated in Figure 4 occurs in vivo.

A phenomenon analogous to the reduction of latency discussed here predicts that, when

a rat moves through a particular region, place cells active for that region should fire ear-

lier after the rat has repeatedly traversed the area24,28,29. This effect has been observed

experimentally54,30.

The model of STDP we used involves a number of assumptions and simplifications.

We assumed that the effects of spike pairs sum linearly in a time-independent manner, but

this is contradicted by some data15. Our results do not depend strongly on this assumption,

but it is impossible to estimate the effects of changing it until the correct alternative is

identified by experimental work. We have also ignored delays of several minutes between

pairing of pre- and postsynaptic spikes and the resultant induction of synaptic modification

that are suggested by experiments15. If the effect is merely a delay, this has no impact
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on our results. If, on the other hand, the process acts as a low-pass filter on the temporal

dynamics of weight change (averaging the effects of STDP over a long period of time and

changing weights according to this average), this could have a more significant impact.

We have re-run our simulations assuming such a low-pass filtering effect. We observed no

changes in our results except for the case of Figure 2F, in which individual spike pairings

caused larger changes than in the other examples. In this case, the impact of these larger

changes is damped by the long-term averaging.

Two other assumptions are more critical. First, stability requires that synaptic weaken-

ing by STDP dominates over synaptic strengthening. If this is not true, the results we have

reported might nevertheless arise from a combination of STDP and homosynaptic long-

term depression (weakening of presynaptic inputs that fire in the absence of a postsynaptic

spike7,8). As long as STDP strengthens causally effective inputs, while STDP and/or other

forms of long-term plasticity more strongly weaken causally ineffective inputs, the basic

results found here should apply. Finally, our model involved hard bounds that kept the

synaptic conductances from going below zero or above a maximum value. An alternative

is to use soft bounds that smoothly reduce the magnitude of synaptic modification to zero

as the limits are approached. Such soft bounds have a much stronger impact on the equilib-

rium distribution of synaptic conductances than the hard bounds we have used and tend to

be highly restrictive. We have not considered them because, in general, they greatly reduce

the effectiveness of any synaptic plasticity rule.

STDP may modify both the absolute strength of a synapse and its short-term synaptic
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plasticity properties, an effect which has been called synaptic redistribution55. We have

run simulations in which we couple the strengthening and weakening of synapses through

STDP to the degree of synaptic depression exhibited by the synapse in a manner consistent

with synaptic redistribution. While this does not change the results we report, it does

reveal an interesting interplay between long-term timing-dependent plasticity and short-

term plasticity. The most effect way to strengthening a synapse with STDP is to have it

release transmitter before a postsynaptic spike and then to stop releasing so that it will

not be weakened by subsequent releases after the postsynaptic activity. A high degree of

synaptic depression, which is a feature of strong synapses in the redistribution scheme55,

assures that this occurs. STDP that acts to modify release probability and change the degree

of synaptic depression is thus extremely competitive and effective at driving individual

synapses to strong or weak limits.

STDP, while making an important and novel contribution to competition, probably can-

not be the sole source of plasticity in Hebbian learning situations. Like any other Hebbian

modification rule, STDP cannot strengthen synapses in the absence of postsynaptic firing.

If for some reason the excitatory synapses to a neuron are too weak to make it fire, STDP

cannot rescue them. A non-Hebbian mechanism, such as synaptic scaling10−12, may serve

this function instead. Furthermore, in the present implementation of STDP, two input sets

that never fire within 100 msec of each other will generate STDP independently and thus

will not compete. Experiments suggest that competition occurs even between input sets

whose firings are always separated by seconds56,57. Such a result could arise if the STDP
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temporal window for synaptic weakening had a long enough tail, if STDP were supple-

mented or replaced by sufficiently strong heterosynaptic long-term depression58, or due to

competition induced by synaptic scaling.

The size of the temporal windows over which synaptic strengthening and weakening

occur is critical in determining the effects of STDP. It would seem highly advantageous

for window sizes to be different in various brain regions, to be modified during stages of

development, and perhaps to be dynamically adjustable over shorter time scales as well.

This would allow STDP to stay compatible with relevant input correlations. STDP appears

to be NMDA-dependent15−19, and NMDA subunit substitution might provide a mechanism

for adjusting its time course. For example, the developmental transition from a predomi-

nance of NR2B to NR2A subunits leads to a faster decay time of NMDA-receptor-mediated

currents59. This might be associated with a modification of the STDP window60. It will

be interesting to see if evidence of such variability in spike-timing plasticity windows is

revealed in future experiments.

Methods

The membrane potential of the integrate-and-fire model we use is determined by

τm
dV

dt
= Vrest − V + gex(t)(Eex − V ) + gin(t)(Ein − V ) . (2)

with τm = 20 ms, Vrest = −70 mV, Eex = 0 mV, and Ein = −70 mV. In addition,

when the membrane potential reaches a threshold value of -54 mV, the neuron fires an

action potential, and the membrane potential is reset to −60 mV (parameters take from
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reference [?]). The synaptic conductances gex and gin are measured in units of the leakage

conductance of the neuron and are thus dimensionless, as are the related peak conductances.

Upon arrival of a presynaptic action potential at excitatory synapse a, gex(t) → gex(t)+

ga . When an action potential arrives at an inhibitory synapse, gin(t) → gin(t) + gin, where

ga and gin are the peak synaptic conductances. Otherwise, both excitatory and inhibitory

synaptic conductances decay exponentially,

τex
dgex

dt
= −gex and τin

dgin

dt
= −gin . (3)

We have taken τex = τin = 5 ms, gin = 0.05, and gmax = 0.015 (except for Figure 4,

where gmax = 0.02 and Figure 2D, where gmax = 0.035). For a 100 M
 input resistance,

gmax = 0.015 corresponds to a peak synaptic conductance of 150 pS.

The synaptic modification given by Figure 1 is realized in the model using N + 1

functions, M(t) and Pa(t), for a = 1, 2, . . . , N . These are initially set to zero, and decay

exponentially,

τ−
d M

dt
= −M and τ+

d Pa

dt
= −Pa . (4)

M(t) is used to decrease synaptic strength. Every time the postsynaptic neuron fires an

action potential, M(t) is decremented by an amount A−. If synapse a receives a presynaptic

action potential at time t , its maximal conductance parameter is modified according to

g → g + M(t)gmax. If this makes ga < 0, ga is set to zero. Pa(t) is used to increase

the strength of synapse a. Every time synapse a receives an action potential, Pa(t) is

incremented by an amount A+. If the postsynaptic neuron fires an action potential at time

t , ga is modified according to ga → ga + Pa(t)gmax. If this makes ga > gmax, ga is set to
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gmax.

To generate the presynaptic firing rates for Figure 5, we choose intervals of time from

an exponential distribution with mean interval τc. For every interval, we generated N + 1

random numbers, y and xa for a = 1, 2, . . . , N from Gaussian distributions with zero mean

and standard deviation one and σa respectively, where σa = √
σ 2 − c2

a . At the start of each

interval, the firing rate for synapse a was then set to ra = r(1 + xa + ca y), and it was held

at this value until the start of the next interval.

To ensure absence of dependence of our results on initial conditions, we have rerun

multiple trials of the simulations of starting from a different randomly-generated sets of

initial synaptic weights (for example, initial weights chosen from a distribution uniform

between 0 and gmax), and using different Poisson spike trains each time. There was no de-

tectable change in results. After convergence, the variability in CV and output rate between

trials was indistinguishable from that seen in measurements within a trial. There is always

a small degree of variability over time after a simulation has converged because statistics

are gathered over a finite time, inputs are stochastic, and individual synapses continuely

change their values although the overall distribution does not appreciably vary. We con-

sider the synaptic distributions to have converged when the output firing rate has stopped

changing in a systematic manner. This occurs in about 100 seconds of simulated time. Sta-

bility has been checked in some simulations for as long as 100 hours of simulated time, and

we have never seen appreciable changes in output rate or CV once convergence is reached.

To be assured of convergence, all presented data were collected only after 1000 seconds of
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simulated time.
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21. Herz, A. V. M., Sulzer, B., Kühn, R., and van Hemmen, J. L. (1989) Hebbian learning

reconsidered: Representation of static and dynamic objects in associative neural nets.

Biol. Cybern. 60, 457-467.

22. Gerstner, W., Ritz, R., and van Hemmen, J. L. (1993) Why spikes? Hebbian learning

and retrieval of time-resolved excitation patterns. Biol. Cybern. 69, 503-515.

30



23. Minai, AA & Levy, WB (1993) Sequence learning in a single trial. INNS World

Congress of Neural Networks II:505-508.

24. Abbott, LF & Blum, KI (1996) Functional significance of long-term potentiation for

sequence learning and prediction. Cerebral Cortex 6:406-416.

25. Roberts, PD (1999) Computational consequences of temporally asymmetric learning

rules: I. Differential Hebbian learning. J. Computational Neurosci. 7:235-246.

26. Gerstner, W, Kempter, R, van Hemmen, JL & Wagner, H (1996) A neuronal learning

rule for sub-millisecond temporal coding. Nature383:76-78.

27. Gerstner, W, Kempter, R, van Hemmen, JL & Wagner, H (1997) A developmental

learning rule for coincidence tuning in the barn owl auditory system. In Bower, J

(editor) Computational Neuroscience Plenum:New York. pp. 665-669.

28. Blum, KI & Abbott, LF (1996) A model of spatial map formation in the hippocampus

of the rat. Neural Comp. 8:85-93.

29. Gerstner, W & Abbott, LF (1997) Learning navigational maps through potentiation

and modulation of hippocampal place cells. J. Computational Neurosci. 4:79-94.

30. Mehta, MR, Quirk, MC & Wilson, M (2000) Experience dependent asymmetric

shape of hippocampal receptive fields. Neuron (in press).

31. Rao, R & Sejnowski, TJ (2000) Predictive sequence learning in recurrent neocor-

tical circuits. In Solla, SA, Leen, TK & Muller K-b (editors) Advances in Neural

31



Information Processing Systems 12 MIT Press:Cambridge MA.

32. Buchs, NJ, Reutimann, J & Senn, W (1999) Learning direction selectivity through

adaptation of the vesicle release probability. Soc. Neurosci. Abst. 25:2259.

33. Mehta, MR & Wilson, M (2000) From hippocampus to V1: Effect of LTP on spatio-

temporal dynamics of receptive fields. In Bower, J. ed. Computational Neuroscience,

Trends in Research 1999. Elsevier:Amsterdam.

34. Kempter R, Gerstner W & van Hemmen JL (1999) Hebbian learning and spiking

neurons. Phys. Rev. E 59:4498-4514.

35. Levy, W. B. and Steward, D. (1983) Temporal contiguity requirements for long-term

associative potentiation/depression in the hippocampus. Neurosci. 8, 791-797.

36. Gustafsson, B., Wigstrom, H., Abraham, W. C., and Huang, Y. -Y. (1987) Long-term

potentiation in the hippocampus using depolarizing current pulses as the conditioning

stimulus to single volley synaptic potentials. J. Neurosci. 7, 774-780.

37. Debanne, D., Gahwiler, B. H., and Thompson, S. M. (1994) Asynchronous pre- and

postsynaptic activity induces associative long-term depression in area CA1 of the rat

hippocampus in vitro Proc. Natl. Acad. Sci. USA 91, 1148-1152.

38. Softky, WR & Koch, C (1992) Cortical cells should spike regularly but do not. Neural

Computation 4:643-646.

32



39. Softky, WR & Koch, C (1994) The highly irregular firing of cortical cells is incon-

sistent with temporal integration of random EPSPs. Journal of Neuroscience 13:334-

350.

40. Stevens, CF & Zador, AM (1998) Input synchrony and the irregular firing of cortical

neurons. Nature Neuroscience, 1:210-7.

41. Shadlen, MN & Newsome, WT (1994) Noise, neural codes and cortical organization.

Current Opinion in Neurobiology 4:569-579.

42. Shadlen, MN & Newsome, WT (1998) The Variable Discharge of Cortical Neu-

rons: Implications for Connectivity, Computation, and Information Coding. Journal

of Neuroscience 18:3870-3896.

43. Tsodyks, M & Sejnowski, TJ (1995) Rapid switching in balanced cortical network

models. Network 6:1-14.

44. Troyer, TW & Miller, KD (1997a) Physiological gain leads to high ISI variability in

a simple model of a cortical regular spiking cell. Neural Comp. 9:971-983.

45. Troyer, TW & Miller, KD (1997b) Integrate-and-fire neurons matched to physiolog-

ical F-I curves yield high input sensitivity and wide dynamic range. Computational

Neuroscience, Trends in Research. JM Boser, ed. New York:Plenum, pp. 197-201.

46. Bugmann, G, Christodoulou, C & Taylor, JG (1997) Role of temporal integration and

fluctuation detection in the highly irregular firing of a leaky integrator neuron model

33



with partial reset. Neural Comput. 9:985-1000.

47. Amit, DJ & Brunel N (1997) Global spontaneous activity and local structured (learned)

delay activity in cortex. Cerebral Cortex 7:237-252.

48. van Vreeswijk, C & Sompolinsky, H (1998) Chaotic balanced state in a model of

cortical circuits. Neural Comput. 10:1321-1327.

49. Troyer, TW, Krukowski AE, Priebe NJ & Miller, KD (1998) Contrast-invariant ori-

entation tuning in visual cortex: Thalamocortical input tuning and correlation-based

intracortical connectivity. Journal of Neuroscience 18:5908-5927.

50. Abbott, LF & Song, S (1999) Temporally Asymmetric Hebbian Learning, Spike Tim-

ing and Neuronal Response Variability. Kearns, MS, Solla, SA & Cohn, DA (editors)

Advances in Neural Information Processing Systems 11 (MIT Press, Cambridge MA)

pp. 69-75.

51. Bekkers JM & Stevens CFJ (1996) Cable properties of cultured hippocampal neurons

determined from sucrose-evoked miniature EPSCs. Neurophysiol. 75:1250-1255.

52. Softky, WR (1995) Simple codes versus efficient codes. Curr. Opin. Neurobiol.

5:239-247.

53. Sejnowski, TJ (1977) Storing covariance with nonlinearly interacting neurons. Jour-

nal of Mathematical Biology 4:303-321.

34



54. Mehta, MR, Barnes, CA & McNaughton, BL (1997) Experience-dependent, asym-

metric expansion of hippocampal place fields. Proceedings of the National Academy

of Science USA 94:8918-8921.

55. Markram H, Tsodyks MV (1996) Redistribution of synaptic efficacy between neo-

cortical pyramidal neurones. Nature 382:807-809.

56. Stryker, MP & Strickland, SL (1984) Physiological segregation of ocular dominance

columns depends on the pattern of afferent electrical activity. Inv. Opthal. Supp.

25:278.

57. Stryker, MP (1986) The role of neural activity in rearranging connections in the cen-

tral visual system. In RJ Ruben, TR Van De Water & EW Rubel, editors, The Biology

of Change in Otolaryngology. Amsterdam:Elsevier, 211-224.

58. Scanziani, M, Malenka, RC & Nicoll, RA (1996) Role of intercellular interactions in

heterosynaptic long-term depression. Nature 380:446-450.

59. Tang, Y-P, Shimizu, E, Dube, GR, Rampon, C, Kerchner, GA, Zhuo, M, & Tsien, JZ

(1999) Genetic enhancement of learning and memory in mice. Nature 401:63-69.

60. Yuste, R, Majewska, A, Cash, SS & Denk, W (1999) Mechanisms of Calcium Influx

into Hippocampal Spines: Heterogeneity among Spines, Coincidence Detection by

NMDA Receptors, and Optical Quantal Analysis. J. Neurosci. 19:1976-1987.

35



Acknowledgments

Research supported by the Sloan Center for Theoretical Neurobiology at Brandeis Uni-

versity, the National Science Foundation (IBN-9817194), the National Institute of Mental

Health (MH58754) and the W.M. Keck Foundation (LA); a Howard Hughes Predoctoral

Fellowship (SS); and by R01-EY11001 from the National Eye Institute and an Alfred P.

Sloan Research Fellowship (KM). We thank Todd Troyer for very useful discussions.

36

View publication statsView publication stats

https://www.researchgate.net/publication/12354727

